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P NONLINEAR INSTABILITIES AND LARGE SCALE STRUCTURES
- IN MIXING LAYERS
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R. Vaglio Laurin and N. S. Liu

- New York University . i
c Department of Applied Science 1
New York, New York 10003
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ABSTRACT :

o
;-

The dynamics of the large scale structures/vorticjty concentratiouns ob- g

served in two-dimensional transitional and turbulent mixing layers are

il bt 1

i n N R N -
e I RS T P

described in terms of a nonlinear inviscid twé@imensiona] instability i

mode].- According to the mode!>the formation and repetitive pairing of ,
'

T o s e,
A A Bl

the structures reflect a deterministic cyclic mechanism wherein the non-

: " linear evolution of the finitelamplitude instability,which dominates the -

flow at any one stage,intrinsically provides first excitation of, and
then energy transfer to, the bound 1/2 subharmonic. The key_tO'identify- |

ing and modeling the mechanism resides in a realistic description of the con-

] ' current changes in the mean flow and in the structure of the wave motion

1 during the amplification, saturation and subsequent modulation of the:indi-

vidual nonlinear instability. Models ba;ed on weakly noniinear stability

theory prove inadequate to this task. The cause of the failure is identi-

T,

fied, and attendant criteria for estimating the applicability of the theory

~
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to the present as well as other problems are indicated. By contrast, several

i
{ salient features of transitional and turbu]ent mixing layer development are -
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reproduced by the repeated application of a nonlinear model,which describes the
life cycle of the individual structure only in terms of the interactive evoiu-
tion of the mean flow and of the wave motions associated with an appropriate
finite amplitude fundamental toﬁether with its bbund second harmonic)Y“Some
views on possible external controls influencing the development of the struc-

tures and of the attendant mean flow are inferred on that basis.

1. INTRODUCTION

Recent experiments by Wygnanski et al (1979a) and by Browand and Troutt (1980)
clearly demonstrate that the quasi two dimensional large scale coherent struc-
tures/vorticity concentrations first observed by Brown and Roshko (1974) per-
sist in turbulent mixing layers. The structures, with principal alignment

in the spanwise direction, rapidly approach an asymptotic state where their
mean transversal dimensions as well as spanwise correlation length become
functions only of the local mixing layer thickness Gw. Their mean distance of
travel between pairings then depends only on the ratio (6m/A) = Gw(U] + Uz)/
(U] - UZ)—-where U1 and U2 denote the velocities of ithe two streams partaking
in the mixing. -so that, for a fixed velocity ratio A, the length of the pairing
process also scales with the local thickness 6uf Thus, the repetitive occur-
rence of a deterministic self-preserving mechanism of intrinsic subharmonic
generation is strongly suggested. The view is supported by the 6bse;vation

that initially forced mixing layers (Wygnanski et al 1979b, Ho and Huang 1980)

exhibit a rapid return to the behavior of unforced layers following the initial .

formation of a single large structure by the simultaneous agg’omeration of

several smaller ones.

Whereas the pairing of structures/vortices is largely responsible for the turbu-

lent mixing layer growth (Winant and Bpowand 1974, Roshko 1976), a
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quantitative understanding of the atteadant dynamics is of distinct interest
from the dual viewpoint of developing flow models based on first principles and
of estab]ishing a rational basis for possible flow control concepts. Available
models of the pairing process rely on numerical analyses of the unsteady
twodimensional flows which evolve either from an initial paraliel "base shear
flow" perturbed by one or more excited eigenmodes of arbitrarily prescribed small
amplitude and relative phase (e.g. Zabusky;and Deem 1971, Patnaik et al 1976),
or from an assembly of discrete 1ine vortices initially arranged in cyclic
arrays with arbitrarily prescribed small lateral displacements and/or offsets
(e.9., Acton 1976}, Aref and Siggia 1980) . In either case solutions are
obtained subject to boundary conditions which assume periodicity of all flow
variables in the streamwise direction over the length of the computational
domain. Many detailed features experimentally observed during the nonlinear
phases of transition in selected free shear flows have successfully been repro-
dﬁced by these models in conjunction with initial conditions which realistically
reflect those encountered in the experiments. However, the comparisons have
typically been restricted to 1imited intervals of space in the experiments and
corresponding time in the theoretical predictions. With few exceptions, e.g.,
the calculation reported by Aref and Siggia (1980), the onset of a cyclic self-
preserving process of 1/2 subharmoric generation and amplification, such as
indicated by the observations of coherent structures in mixing layers, has not
been demonstrated analytically. Since the numerical solutions are deterministic
and uniquely defined by the assumed initial conditions and the non controversial
boundary conditions, it is difficult to understand how they could predict self-

preserving vortex pairing over distances which scale with the local layer

e ol S Bl ol 2 ¢t st 2 b ceanbS LM 32 i i
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thickness 6w in unforced mixing layers, and rapidly recover the same self-
presarving process in forced mixing layers, which evolve from obviously differ-
ent initial conditions. Thus, the issue of understanding the dynamics of
the scale change undergone by the structures as they cuiwvect downstream is

not fully settled. -

The observed rapid recovery of self-preserving vortex pairing over lengths which
scale with the local mixing layer thickness, independently of the initial and
external disturbance spectrum, suggests that the operative mechanism may be
one where ?) the excitation of the 1/2 subharmonic is intrinsic to the non-
Tinear evolution of the finite amplitude instabilities which control the forma-
tion or the individual structures, and 2) the subscGuent amplification of the
subharmonic drains energy from the preexisting instability so that memory of
the specific initial conditions is largely lost after one or a few structure
life cycles. This is the proposition elaborated in this paper. Its demon-
stration clearly depends on a realistic description of the history and struc-
ture of nonlinear wave motions associated with individual finite amplitude
instabilities and on a study of self-induced modulations which result in
interacting pairs of such instatilities having frequency ratios of about 2.

The paper devotes much attention to the analysis of these specific problems.

In order to avoid the large labor and cost entailed by simulations of spa-

tially developing flows. where the streamwise extent of the computational

doinain must encompass several vortex pairing lengths, our investigations address

the problem of temporally developing mixing layers, where a computational
domain with streamwise extent restricted to two eddy sizes allows analy:is of
the vortex pairing process and assessment of its seif preserving nature. In

doing so we recognize that the time evolution of the unsteadv shear layer,

«
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stat:3tically homogeneous in the streamwise direction, and the space evolution

of the laboratory mixing layer, statistically stationary in time, are not

strictly equivalent ,since one flow cannot be reduced'to the other by a

E Galilean transformation. Accordingly, we employ due caution in transposing F
results from one situation to the other, especially for what concerns the :
{nteractions among instability pairs, which are known to be dispersive in the

spatial amplification case (Michalke 1965) but non-dispersive in the temporal

amplification caze (Michalke 1964). The relevance of this caveat to the study

of vortex pairing is evidenced by Petersen's (1978) experimental finding

R 4L G R

that"... the first pairing occurred where the mixing layer became sufficiently

o RN TV

thick, owing to nonlinearities and entrainment, that a subharmonic wave had

a phase velocity that matched the convection speed of the vortex ring."

Cur inquiries into the structure of the wave motion associated with instabilities

of small :.but finite amplitude, growing at a finite rate, lérgely address the

LI SR I 1ol & Tl S MY et L

central tenet of weakly nonlinear theories, viz., that the eigenfunctions
given by linear theory continue to yield an adequate representation of the

motion in the nonlinear case. Since experiments (e.g., Miksad 1972) clearly

AV I e IR TR LT

show that significant variations of mean flow and maximum shear accompany the

growth of instabilities even at modest amplitudes, we relinquish the classical

Vel - AT T e

assumption of invariant eigenfunction shape (Stuart 1960) in favor of . the

Meksyn and Stuart approach (1951), which we rederive in the context of multiple
scales methods {e.g., Nayfeh 1973) together with a self-consistent equation %
for the time rate of change of the disturbance energy. We then assess the pre- o
dictions of the extended Meksyn and Stuart model by comparing them with Miksad's

(1972) hot wire measurements in the nonlinear stages of free shear layer transi-

s el i L 5§

tion as well as with the predictions of a nonlinear model largely patterned

2fter those of Zabusky and Deem (1971) and Patnaik et al (1976). Unfortunately,
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% ' the assessment proves negative, so that all our subsequent considerations %
% necessarily rely on the nonlinear model. On the positive side, the reason E
' ' for the failure of the Meksyn and Stuart approach is identified, and

5 attenuant criteria for estimatiﬁg the applicability of that model in other i

-i nonlinear instability problems are indicated.

Our inquiries into the mechanism of subharmonic generation and‘amplification

largely stem from the predictions of the nonlinear model for the concurrent
‘ evolutions of the mean flow and of the wave motion! associated with a finite é

anplitude instability undergdoing saturation and subsequent self-induced modu-

lation of both amplitude and structure. Whereas the frequency of the modula-

e s

tion is close to that of the subharmonic, and the phase velocity of the sub-

harmonic compatible with the prevailing mean flow structure matches the con-

vection speed of the vorticity concentrations generated by the saturated

L TaE

instability, we find here conditions intrinsically conducive to the initiation é
§ év of vortex pairing.' A calculation employing the nonlinear model to describe
%» : ~ the development of the unsteady shear layer which evolves from such initial :

conditions (including the attendant initial structures of the fundamental and

ey, TETE T Aeepr

subharmonic wave motions) allows us then to follow the pairing process to

subharmonic saturation, and to demonstrate the cyclic nature of that process

by the favorable comparison of the mean flow and wave motion prevailing at

the beginning and at the end of the cycle.

: é In the main body of the paper, the elaboration of our inquiries, and the pre-
. sentation of the attendant results, are prefaced by a derivation of the relevant ;
analytical models in the context of selected experimental data, which provide

guidelines for that derivation (Section 2), as well as benchmarks for the
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subsequent assessments (Sections 4 and 5). Numerical procedures used in the

implementation of the models are pruesented in Section 3

2. FORMULATION OF THE MODELS
Based on the experimental observation (Roshko 1976) that the large organized
i structures of mixing layers are not affected by the small scale turbulence

appearing at the higher Reynolds numbers.we take the threefold view that:

1) essentially the same cyclic nonlinear mechanism governs the formation and

the pairing of structures throughout the nonlinear transitional and turbulent

regimes; 2) in each cycle the mechanism is only associated with a few discrete
large scale dominant inviscid twodimensional instabilities,whose energy first
; grows and then decays along the lines indicated by measurements in transi-

tional flows; 3) the high Reynolds number small scale turbulence, bound to !

I R [T T Ty A T

the large scale structures and generated by a hierarchy of secondary insta-

; é bilities intrinsic to the flow patterns associated therewith, plays a negli- -1

gible role in the dynamics of the individual cycle, ard merely provides the

¢ . _ conduit for cascading the residual energy of large scale instabilities dominant
in previous cycles. In support of these views we submit that the predominance
of a two-dimensional mechanism is not precluded by the experimental finding
(Browand.and Troutt 1980) that the structures are not strictly spanwise and

two-dimensional but, instead, may be skewed and branched. The observed ratio

between the spanwise correlation length of the structures and the local

mixing layer thickness § approaches a lower bound of about 3 for 20% corre-
w :

ciently high Reynolds number (Ul-Uz)su/v. In these flows the streanwise separa-

tion between structures, as well as their travel distance between pairings,

-7-

IR T -ISRPRIE T2V

lation coefficient in flows characterized by a velocity ratio A = 1 and by a suffi-

e




NYU/DAS 81--06

are of the order of 3 to 46w; thus, the wavelength characteristic of the ob-

BRI el e ke it e
.

served spanwise skewness is distinctly larger than the lengths characteristic

of the streamwise instabilities controlling the evolution of the structures.*

Under those conditions only a linear, zero:average, spanwise modulation of

the |1instabilities and their nonlinear dynamics should accompany,and manifest
itself in,the skewness; accordingly, consideration of the nonlinear processes 3

in a spanwise-averaged twodimensional épproximation is indicated. In that -

e o 2 e b s o= = e ne

_ b
connection we also remark that a secondary Taylor-type 1nstab11ity-jintr1nsic
| to, and bound with,the flow pattern relative to the evolving vortiéity concen=-
trations/vorticity braids characteristic of the structures—%is presumably

i responsible for the observed skewness. Pending a quantitative analysis of

: this instability and its interactions |with the streamwise instabilities, we

note that the experimentally observed invariant scaling of the spanwise correla-

tion length with the layer thickness 6w-indicates synchronous cycles of ber1od

il aRk B R Rt St L RSt + -l S R SR ot 6 L Rl L e e R & T
: Rt LRI i IS R
T ew it A iy st s e s Lt Lt

doubling and attendant energy transfer in wavenumber space for the dominant

streamwise and spanwise instabilities. Since period doubling implies at least \

; : a half revolution of fluid elements within the devé]oping subharmonic cat's eye,
é' and since spaawise and streamwise r.m.s;. velocities are at best coinparable, the
? . shorter wavelength streamwise instabilities necessarily control the process;

1 the spanwise instabilities, paced by the stage of deve1opment of the support1ng

jarge scale structures in streamwise planes, then follow, and just respond to,
that development. Thus, the study of large scale structure dynamics in a two-
dimensional approximation is indicated again. In this approximation we then

g approach the specific problems posed in the introduction.

*The measurements of Wygnanski et al (1979a) indicate much larger
spanwise correlation lengths for a velocity ratio A = 0.4.
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: - In order to assess what constitutes a realistic description of the history
‘and structure of nonlinear wave motions associated with individual finite
amplitude instabilities we consider the nonlinear time development of ' 7
homogeneous inviscid 1ncompressfb1e two dimens{ona1 unstable shear flows.
With reference to cartesian coordinates (x, y), we assume that the initial

state of motion results from the superposition of a single, small amplitude,

cipten ek i gl o g e

excited eigenmode, périodic in x and t (with wavenumber o and frequgpcy 8)

e L A R R P S L L s R G R S B st i oz

|

|

| upon a mean (x-averaged) parallel velocity field; that is, at t = 0 3
|

: ¥(x, ¥, 0) = [U(y,0) + u (x, y, 08), v(x,y,0)] (1)
| .

We describe the time evolution of the flow in terms of the stream function

; l ; ' ﬁ(x,y.t)_which must ;atisfy the vorticity conservation equation
] z (v W)t + wy(vzw)x = Py (VZ\P)y =0 (2)

subject to the initial conditions (1) and to the boundary conditions

y++o mx-»o . (3“@)

if the flow is unbou‘nded, or thejboundary conditions

RTOG T T SER R R ST Ry T S H

y=zty, Py = 0 (3-b)

1

bome UL e F ol 2002

if the flow is bounded by rigid walls at y = 2 ‘yw.

We seek solutions of equation (2) under the assumption that, for all times
t> 0% the stream function J may be resolved into a mean flow contribution 3
¥(y,t) and a disturbance contribution eP(x,y,t), the latter possessing

small but finite amplitude characterized by the parameter e<<l, as well

SR B

ikl i, 55

as x-periodicity with wavelength (27/a); thus

w

Px,y,t)

¥(yst), + ep(x,yst) W)

TR
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Substitution of(4) into (2) yields

(V¥ +ev2p), + & I¥, (%), - ¥, (v¥¥), 1

+et Y TV, - ¥y (v2p) 1 =0,

and upon x-averaging
w&mt+é<%w=wx- szwy>=oi (6)

which is the equation governing the time evolution of the mean flow. The

equation describing the evolution of the periodic disturbance follows readily

upon subtraction.of (6) from (5), viz.

(V20), + ¥, (V) - (v20) |

t

. (7)
*elby (T) = 0 (T3] - <oy (T2), -0, (FP) T =0}

Equation (6) indicates that, if the disturbance stream function remains !

of order unity under differentiation with respect to the space coordihates,
the mean flow vorticity (v2¥) varies on a slow time scale T=e2t. Under these
conditions the solution of (7) may be sought by the method of multiple scales

(e.g., Nayfeh 1973), and a uniform expansion for the disturbance stream func-

| i

tion in powers of ¢ may be obtained according to

3
p(x.y,t) = 5 € Y (xy,t,1) ;(®)

n=1 !
If,in Tine with our assumptionsa single eigenmode is excited at t = 0, the

leading term of the solution (8) must have the form

Y (xsy5t,t) = 1/2[A (1) gy (y,7) &+ c.e (9)
30

:
4
1
1
;
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Substitution into (7) then shows that the function ;](y,r) must satisfy the
Rayleigh equation

Li(gyd = Wa -8) (gyy =migy) - ol 5y = 0 (10)
with the homogeneous boundary conditions

y+ tew 5 * 0 : ()

but that the function A](T) remains undetefmined at this level of approxima-
tion. The equation governing the presumed slow time evolution of the mean
flow to this leading order is obtained readily from (6) and (9), viz
%

sYY) (12-a)

Ue = - V2 alag)3 e*P(ZEBi, dt)  In(gz

where c; denotes the complex conjugate of L, and B; = Im(B). If (13) is

used to express F:yy in terms of U and c;; (12-a) may be recast in-the form

- a’ 2{ t - \ -2 2 |
U, =35 IAl lexp(2 fo Bydt) 8, !Ua- Bl 1%y 10y, (12-b)

which clearly is of parabolic type, with space and time dependent effective
diffusivity, as long as 8, > 0& Successive differentiations of (12-a,b)
with respect to y readily yield expressicns for the siow time variations of

the slope and curvature of the mean velocity profile U(y,t), viz.
' t

U, oo %mlAﬂ?expﬁz /
. ; :

*
yr = Biet) Im(eiTiyy), =

0

l

& !Ai;exp(z ft B, dt) Ue "2 (Y A| |2 +u' e 1?) -
2 70 , Fi9t) 8y |Ua - 8] yy'®tly T Pyyy'®

(13)

202 U -8| "2
o? |Ua -B| vu U

!

-11-
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4
‘é.

3 i - 1 b2 ol =

TS PP |
: a0 |A|%exp (2 S B, dt) B |Ua - 8| :

% - 1; o 1 X 3
i i . 12 + 12+ 12 !
- Wyylarlfyy * 2 Uy I5gly Uy 1510 ()
§ | - 92 - gl~? ~ . ;
222 U - 817 LW, U+ 20 U] %
3 | Clearly equation (10) and (12) merely reproduce the model of Meksyn and ;
- : Stuart (1J51) for the study of finité disturbanées. The derivation by the ?
g E multiple scales method clarifies the crucial vaderlying assumption of slow é
£, :
3 : variation of the mean flow as well as provides the framework for a systematic =
5 ' é evaluation of the function A](T) (see below) without appeal to the heuristic %
£ by i
: E ; energy considerations adopted in the original model. The equations (13) and 3
; (14) have no direct role in the determination of the flow according to the §

% 5 model. They are presented here because experience with solutions of the %

f Rayleigh equation (10) indicates that the eigenfunction %, and the associated é

R { ' eigenvalue B are quite sensitive to the curvature Uyy of the mean velocity §

? profile. An examination of (14) then provides the key to the a posteriori :
g assessment of the cenditions where slow time variation of the mean flot;and §

!
oo
o attendant description of the disturbance evolution .according to the multiple
!
|

scales method,may realistically be assumed. Toward that objeciive, we need to
| o2

i determine the equations governing the second order o(e?) and third order o(e®) 3

TOTIOPI) RETE

contributions to the solution (8); this is done below.

2 L aowaiil

Elaboration of (7) in the context of the solution (8) shows that the cortribu-

tion wz to the disturbance stream function must have the form

,
) O, e
PO dine oI .
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Yo(x,y,t,t) = %'[Ai(T) goly,t) 210 4 c.c.] (15) 3

the function 5 being the solution of the equation

= A - ' - 2, - o=
(16) 3
o ;
7 (8 Sy - By Ty
subject to the boundary conditions :
y+rt z, > 0 (17) 3

However, the function A](r) still remains undetermined. As usual in weakly
nonlinear stability theories, an equaticu for Al(r) is obtained upon consider- é
ation of the contribution o(e®) to the solution (8).Elaboration of (7) to 6(8’) i
shows that the inhomogeneous part iof the equation for ¢3 includes, among é
others, terms proportional to exp(i8), which are contributed by the derivative ;
of ¥; with respect to the slow time variable . Secular terms in the partipulaé
solution for Wj » and the attendant nonuniformity of the expansion (8), can :

then be aveided only by seeking the particular solution in the form

Va(xayatst) = 3 L A(T) Ay (x)]%50y,T) 670 + cuc.) (18)

2! S Ve alh 4 b s 0 bl

the function %q being the solution of the equation
| ,
b13) = (Va - B) (E3yy - @%55) - U L,

vy
(A, [af)- (A191)1.-"f expli(0- ) 1g, (19)
where
- 2
91 (1) = (g, ©%,) | (20-a)
9y (y,T) =lo(2,0%  +2, 0 ) - 2wz (€, -3alr,)-
27> 2% lyyy "2y "lyy ly “yy 2
1(Czyy - L)y 1M (20-b)

-13-
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Clearly integrability of (19) requires ihat

F%—“"“ S - e .
£
NYU/DAS 81-06 ;
: 3
= subject to the boundary conditions ;

;

FoAALg Ry 9y - 1 AIA e TH(0- 0%) 19, dy = 0

s

i where ?l(y,r) denotes the solution of the equation adjoint to the Rayleigh

TR FT R Ty
QEETNY

equation, viz

n n n
(Vo - B) (‘Jyy - a’g)) +2 ol &y 0 (22)

Accordingly AI(T) must satisfy the ordinary differential equation E

b dinch) - o ot s iiea i i

. . 2 .
{ hy K] +hyAy + hy A1|A1| 0 (23) :

2 5 where

‘ hl (1) ={w 91()'»1-') '&:1-()"1) dy (24-a)

hy (x) =/ [(3/37) g9,(y,7)] Ei(y,r) dy (24-b)

hg (1) = - 1 exp [ (6 - 6917 g,(y,7) 7 (o)dy (24-c)

Equation (23) embodies the extension of the Meksyn and Stuart model yielded

by multiple scales considerations. Interestingly enough, if the t dependence

BRI AL T SR T

of the eigenfunction is ignored, i.e., if g;, =hy =0 in (24-b), equation (23) %
reduces to the classical result of Stuart (1960); thus both the TMeksyn and Stuart

and the Stuart models arise as particular cases in the present context.

The derivative g,  in (24-b) and the coefficient h, in (23) are retained here; they

are evaluated by noting that, since the eigenfunction 7, satisfies the Rayleigh

. .at

equation (10), the derivative ;15 must satisfy the equation

= (Ua- - 2 N -
1| Ll(Ch) (U(! B) (Clr,yy Ko } Ch.) auyy cl'l‘ (25)
i . |

-14-
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readily derivable from (10) upon differentiation with respect to the

slow time .

Equation (25) is also subject to an integrabiiity condition which yields an

; ordinary differential equation for the T dependent eigenvalue B(t), namely

ot
3
33
3
K

% ; . i T
5 | B-_-[.h4(r)/h1(r)] or | glt) -8(0)= fo (hy/hy) dr (26)
g | where |

TR

With this condition, which merely reflects the assoriation between the

vt b et g a1 we il

t-dependent eigenvalues B an. eigensolutions ;l‘of equatidn (10), the formu-

lation of the extended Meksyn and Stuart model is completed. Its applica-
tion to determine the evolution of an inviscidly unstable free shear flow

subject to finite amplitude instabilities involves a siepwise advancement of

I T RO T T T

the solution in time. Given the initial mean velocity field U(y, O)and the
wavenumber o as well as the initial amp]itgde Al(o) of the disturbanLe, the
unit step in that process, between times Dfand AT,'involves sequentially:

: i) the integration of equations (10), (22) and (16) to determine, respectively,
% N the eigenvalue 5(0? together with the function ci(y,O) and the functions .é
?;'1'()',0). Zy(y,0); 11) the evaluation of U_‘r(y,O), and U (y 0), 8°t0) from ;

yyt
(12), (14) and (26), respectively, and the consequint determination of

%1.(¥,0) by integration of (25); iii) the integration of (23) and (i2-b) to ob-

! tain Al(Ar) and U(y,At), whereupon the next step can be started. Numericai pro-

i

cedures for these calculatinns are presented in Section 3, and an assessment of i

2

] the attendant predictions for the evolvina structure of the wave mntion associated ;

with a finite amplitude instability is set forth in Section 4.
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Whereas measurements, even 41f detailed and spectrally resolved, do not
usually provide much information about those features of nonlinear instability

waves -- viz., transversal variation in phase and associated velocity as

T 3 SRR~ A T ey

wzil as vorticity fields -- which are most important for the realistic evalu-

ation and refinement of a theoretica! model, the assessment of Section IV

includes a three way comparison among avaiiable experimental data, predictions

of the (wedkly nonlinear) extended Meksvn and Stuart model, and predictions

' CHIR T S

of a strongly nonlinear incdel. The choice of the nonlinear model is tailored ;

to both lines of inquiry reporte i the paper, namely: the identification

e v b et g1

of the cyclic subharmonic gereration mechanism in mixing layers and the descrip-

! tion of the detailed structiure of the nonlinear wave mctions associated there-

(i e R

suedbarbitihtd o, s,

with.* As stated above, we seek to demonstrate that the dynainics of two-

dimensional inviscidly unstable transitional and turbulent shear flows are %

dominated by the same determinic<.ic, self-preserving, repetitive process of 3

R SRTT G T B e,

subharmonic generation wherein the nonlinear evolution of an individual

finite-amplitude, two dimensional, streamwise-propagating instability intrin-

sically provides mean flow growth as well as cyclic excitation of, and sub-

bbbt s -

3 : sequent energy transfer to,its own 1/2 subharmonic. In this view a re-

wctaltdu

4 . stricted class of nonlinear instability processes is singled out as govern-
ing the development of turbulent mixing layers. Specifically, the initial

"'i formation of vorticity concentrations in the transition region is associated

E_ : with the self-1imiting nonlinear growth of a single dominant inviscid insta-

bility -- the fundamental -- whose selection is governed by a convolution of

the disturbance environment with the receptivity (Tam 1978) and the frequency/

.a*

E ; * The failure of the weakly nonlinear model in describing the structure :
] of individual instabilities (see Section 4) preempts its extension to 3
the subharmonic generation problem. ;

-16-
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amplification rate properties (Michalke 1964) of the initial wixing layer. a

The evolution of the fundamental is strongly influenced by the concurrent

L ey

b distortion of the mean flow, but is largely unaffected by the concurrent
excitation of harmonics (Zabusky and Deem 1971). Upon saturation the

fundamental undergoes a self-induced modulation (the vortex nutation ob-

T

i

served by Zabusky and Deem 1971, Patnatk et al 197¢, .Miura and S2lo 1978),

JERF GRS i e

o which affaects the amplitude and the structure of the wave motion, as =11 ‘ ,i
as the distortion of the mean flow. As we shall demonstrate in sec}ion 5, the
frequency of this modulation is nearly 1/2 that of the saturated fundamental,

Lol

o il

while the concurrent mean flow distorfion is such thut the subharmonic fre-

R P D o A S L

quency closely approaches tiose of the maximum amplification rate spatial and

temporal instabilities for the prevailing mean flow. Since the phase veloci-

ties of these instabilities and of the fundamental are then essentially the

Y T TR

same. 1/2 subhavmonic excitation, with well defined initial amplitude as well

as structure of the attendant wave motion, ensues from the modulation of the :

fundamental. The intrinsically excited subharmonic then amplifies, draining
T energy from the fundamental as well as from further distortion of the mean

" ‘é flow. However, its growth is again se]f—limiting and such that, at satura-
tion, the original fundamental becomes neariy spent, while the structures of i
the mean flow and of the subharmonic wave motion reproduce,-except for a doub-

ling of all length scales, the structures that prevailed at the earlier time

™ R
mnmwmw filbtunaiial i It sind TaT BV TR DS TEL ST

of fundamental saturation. A self-preserving process of cyclic nonlinear -

subharmonic generation and mean flow development follows necessarily.

Whereas only two waves (a fundamental and its second harmonic interacting with
each other as well as with the mean flow) are active at any stage of the non_
lincar wave cycle postulated above, our nonlinear model seeks solutions of the

-1- :

o
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equations (6) and (7) under the assumption that the perturbation stream
function ¥ may be described at all times by a Fourier series in x truncated

at the second tem, viz
2

Voyat) = 120z ¢, (v.t)e " 4 ey
nl

(28)

With this assumption the modal structure of the evolving flow is clearly
manifested at all times, and the complexity as well as cost of the numerical
integrations are considerably reduced. In its support we note that the numer-
iral results of Miura and Sato (1978), who adopted tha Fourier series approxi-
mation, and those of Zabusky and Deem (1971), who directly integrated the
time-dependent incompressible Navier-Stokes ecuations, exhibit quaTita- '
tively identical saturation and post-saturatidn behaviors for finite amplitude
instabilities in free shear flows. Thus, the departure of finite amplitude
instabilities from an initially sinusoidal spatial shape (Patnaik et al 1976)
seemingly plays a secondary role in their development. However, further
scrutiny may be in order as to the influence of that d-parture on the onset
and evolution of small scale secondary instabilities -- e.g., those respon-
sible for the skewness and apparent branching of the mixing layer struc-
tures -- which are sensitive to the details of the flow pattern relative to

those very struct:es.

Substitution of the assumed form of solution (28) into (6) and (7) readily
yields the system of coupled nonlinear partial differential equations which
govern the concurrent time evolution of the mean flow and the selected two

dimensional disturbance modes, namely

i -

-18-
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- [1(a/t) - Vo] (dyy, - o)) + abyy & *
E N - 4at + (29-b)
: -ud (20, (ofy, - o"9f)y - 9flepy, - 40Ty /
3
oy Loy - atel) - 2olylegyy - St 7
-
x [1(3/3t) - al . (¢2,Y.Y 4. ¢2) + zuuyy ¢2 :-
j : | (29-¢)
4 i . .a _ 2 - o2 |
o e 5 [0yloryy - aterly - oy (g, - oy if
to be integrated numerically subject to prescribed initial conditions
1 U(y,0), ¢1(y.0). ¢2(y.0) and to “he boundary conditions
; y+ teo U(y,t) -+ U(y,0) (30)
? | #y(y,t) 9 ¢p(y,t) +~ 0
Procedures for this numerical integration are presented in thefollowing
o section, and attendant results, relevant to our inquiries, are reported
and discussed in Sections 4 and 5.

2t
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3. NUMERICAL PROCEDURLS
As pointed out in Secti:n 2, the unit problem of determining the evolution

of the motion associated with a nonlinear instability over a time interval At
according to the extended Meksyn and Stuart model' involves the sequential inte-
gration of equations {10), (22), (16), (25), (23) and (12-b). The integration
of equation (10) to determine ;l(y.t) poses a classical eigenvalue problem,
which is solved by iteration. Given a trial eigenvalue 8(t), two linearly
independent solutions cl(l) and cl(z). satisfying the asymptotic behavior
cl(”-r Cl(”(r) exp (-ay) for y + =, are determinéddby numerical integration

using a variable order Adams predictor-corrector method tp march ffom large

y toward y = 0} where the condition [Re(tél))lﬁe(tgs)) ] l = [Im(tl(l))llm(tl(z))l

is to be satisfied. The value of B is incremented using a Newton-Raphson
scheme, and the numerical integrations are repeated, until the condition on

y = 0 is satisfied. The final solutions cl(” are linearly combined so that

Re [r;ly(o.-t)] = Im [1:1(0,5:)] =« 0, and t“ﬁen normalized so .that Re '[:1(0, )] =1
Exactly the same procedure is then followed to determine 'E'l'(y;"t) by numerical
integration of (22): however, no iteration in B is required because (22)

is adjoint to (10). The determination of cz'(y,-c) by integration of the
nonhomogeneous equation (16) subject to the homogeneous boundary conditions
(17) is unique;and reducible to the evaluation of the particular integral,
because no complementary functions of (16) exist which satisfy (17). Two
particular integrals 1;2(1) and ;2(2), satisfying the asymptotic behavior
;2“)-» cz(i) exp(-2qy) for y + », are first determined by numerical inte-
gration using the aforenoted Adams method to march from large y to y = 0; the
final solution. is then obtained by the linear combination gy = 02;2(]) +

(1 -D,) ;2(2), which satisfies the conditions Re[Czy(O.'t)] = lm[cz(o.r)l = (

-20-
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provided

| m ambr (1) (2)* 2 * o :

| 0, = - (g1 ? ) Re(:éy))+ i (t§§) -c2§2) ) I (5,2))) y=0
with (1) . ,(2)y (o (D% (2)* |
A =R - - .
A e[((z %2 ) (Czy Czy N y=0 : :
The integration of (25), subject to the boundary conditions Tac* O.for y+w
! and §1p = 0 for y = G, is reduced to the evaluation of quadratures by -the §
o substitution ;

y

2e 37) = ylyae) Jo ny (yet) dy

YR e ey TERTTT R ~ vm

‘which transfoms (25) into the equation
-l
nly+ 2(1 l:ly nl = f(y,t)

e g e e
O

with i

| flyot) =(Ua -8)™" [l 2y - (U, a-B") (€yyy = @%%))]

The solution 1is

N T IRV S N

- Y
nl(YsT) = Cl 21;::1 f dy

Upon this determination of cIt(y,r) the amplitude function Al(t + Ax) is

8 b NS et o e

; calculated from (23) and, finally, the mean velocity U(y,t + Atr) is obtained
) 15 by numerical solution of the nonlinear parabolic equation (12-b). In that
connection a standard, stable, implicit, second order accurate scheme,
where time and space derivatives are approximated by centered diffe;ences,
is used to convert (12-b) into a system of simultaneous linear equations

for the unknowns m5n+1 = (an+1 - U?) = [Uj(r + AT) - Uj(r)]. where

i o T Y SRS N T VI e 1

j = 1,2... N denotes the general y - mesh point. When the boundary conditions

are taken into account, the system takes tridiagonal form amenable to rapid

P oy < et s
il

direct solution. That completes the advancement of the weakly nonlinear,

extended Meksyn and Stuart solution by a unit time step.

T T RT3 14 g
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Passing to the nonlinear model described at the end of Section 2, the unit

L AT TR

problem of determining the interactive evolution over a time interval At of

the mean flow and the wave motions associated with a nonlinear instability

PR L1 1 T W e L At

as well as its bound second harmonic involves the siinultaneous integration
1 ; of equations (29-a,b,c), In that connection, an implicity, second’order ' A
' éccurate scheme, where the time and space derivatives are approximated by

cantered differences, is used to convert (29-a,b,c) into a system of simul-

taneous linear equations

bt e i vt s Bl

-y
% 1 ' ‘ AD g N+l n+l N+l o phphtl n, n+1 ) §
e Ajeia ¥ BJ Py Oy +D.j"'dw*l FE® 2 = T (B1) 3
: where j =1,2...N ¢2 1 denotes the vector with components (Un 1 u" ;
|

] Z ¢?;1 ¢]J, ¢n+1 ¢23) to be determined at the general y-mesh po1nt i, and e
2 S S 4

the coefficients A through EJ are 5x5 matrices. When the boundary cond1t1ons ‘
n+1 ;
(viz 2} 2 0= Qn 1) are taken into account, the system of equations (31) -

takes block pentadiagonal form and thus, becomes amenable to direct solution.

% § The algorithm remains quite stable when the time step At is chosen consistent

with the condition 5

max [r L|u|"+e|.1>]\y|J elcbzyl") te aCICb ln +2l¢ ln)] Ky“ 1 j

1
‘Ua where
|
|
|
|
1

ea[l¢ - &?¢ 2|¢ 4 .a2¢,|"1
r 1yy ll 2yy_ 23

i - n

2yyy™ °2y| 1.

approximately describes the ratio between the x- and y-derivatives of the

vorticity at the jth mesh point and time t.

-22-
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4, EVOLVING STRUCTURE OF NONLINEAR UNSTABLE WAVE MOTIONS

We consider the evolution of a pempora]Ty developing shear layer. The initial
state of movion is characterized, in dimensionless variables, by the mean
velocity U{y,0) = ténh 2y, upon which the velocity and vorticity fields atten-

; dant to the nearly most unstable eigenmode a= 0.8892, B(0) = 0 + 0:3784 i are

i . superposed with <= 0.10 and AI(O) = 0.10, Two rigid plates located at y = £3.875
are asstmed to bound the flow,and solutions are determined subject to the atten-

3 dant boundary conditions. 1

T AR TS T TR

Analysis of the fiow development according to the extended, weakly nonlinear,

%i Meksyn and Stuart mode]yieldﬁthé suspicious result that,as time prugresses, B,

decreases but A, increases (Figure 1) to such an extentl that the amplitude
-t

a(t) = 1(-r) exp (f B1dt) of the perturbation stream function on the ax1s y=0

i
o distinctly exceeds the 1inear pred1ct10n cA (0) exp (Bi(O)t) when a(t) >Bi(0)

13
¥
L
L
£

(Figure 2). MWhereas this prediction differs from that of the nonlinear model
(Figure 2), as well as from the trends suggested by measurements in transi-

tional mixing layers forced at the most unstable frequency (Figure 3), a

. failure of the Meksyn and Stuart approach is indicated. A little diagnostics

readily locates the source of the difficulty in the assumption of slow time

variation: even at the initial time the derivative (Clyy ﬂ.azcl)r-is of j

order unity, much larger than;;Tr(Figure 4).

The trend of (Clyy - QZCT)T versus y shown in Figure 4 further suggests that

the problem stems from an inadequate description of the vorticity transports

a2¢

in the cat's eye of che evolving wave around the critica] layer y = 0. In

‘ t
3 P that region, having time dependent lateral extent &(t) =[eA, (t) exp(s B1dt)/
: f U ((),T)]I/2 = [a(t)/U (0,1)1] 1/2, the mean velocity U as well as the curvature
L 23
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of the mean velocity profile Uyy

(14), the time rates of change of those quantities when auy(s.t)S(t)>B§(r)

are o(6); however, by virtue of (12-t) and

=1 ~ .8 -1
become respective]y,s1 Uy = o(6%) and By Uyyt
the curvature Uyy, which has a profound influence on the shape of the eigen-

function L:» exhibits in the critical layer a normalized rate of cﬁange

I
(Biu_y

y)'! Uyyt = 0(1) comparable to that of the disturbance vorticity, viz

[8;(zqyy - .azgl)]-l (Zyyy - a?gy), = 0-(1). As a consequence, the assumption -
that the structures of the mean flow and of the vorticity field associated with

the instability vary on a slow time scale collapses, and the weakly nonlinear

model fails to describe the flow realistically. The extent of such failure
is vividly demonstrated in Figure 5, where the structures of the wave motion
predicted by the extended Meksyn and Stuart model and by the nonlinear model
for t = 9.82,a(t) = .285,8(t) = . 1767 are compared’with each ther as well as
with the structure prevailing at t = 0. Even greater divergences arise in a

comparison between the growth rates and the structures of the wave motion

predicted by the two models for the second harmonic. i.e.. the normalized
Cz(y,t)/Relcz(O,T)J and its derivatives vis a vis the normalized

¢2(y,t)/Re[¢2(0,t)] and its derivatives. Thus, reliance on the nonlinear
model is indicated, and justified below, for the problem on hand.

The evolving structure of the wave motion which the nonlinear model predicts
for the amplifying instability up to the time of its saturation (t $ 13.5
in Figures 2 and 6) compares favorably with experiments on at least two
counts. First is the qualitative | agreement of the relative growth rate

trends predicted by the model for the scaled energies

Yw
E,, (na,t) =f ;2('%"2* n*a*|¢,|?) dy
-yw

-24-

= 0(8). Under those conditions
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developing shear layer identified at the beginning of this section(Figure 6)
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of the dominant fundamental (n=1) and its second harmonic (n=2) in the time

vis a vis the relative trends of the energies

u
E (nB x) fw wd‘y

Yy 20, (x4) - "I

measured by Miksad (1972) in a space developing transitional mixing layer forced

at the same scaled frequency (Figure 3): in both cases the energy of the har-
monic grows at a rate approximately 1.5 times that of the fundamental, a be-
havior certainly not predicted by weakly nonlinear theories. We postpone analy-

sis of this behavior, anticipated qualitatively by Robinson (1974) and dis-

cussed further below, to elaborate the second count, viz. the quantitative

agreement between “he magnitudes of the energies Etl and Eul which theory and
experiments, respectively, associate with the fundamental at satuvation. Upon
reference to the scales of the equivalent temporally deve\oping wixing layer,

we set em(xo) = 1/4 and GT = 2 in the definition of Eul' We then proceed to

L3 4L,

calculate the ratio (Etl/Eul) consistent with these values and with the theor-

etically predfcted structure of the wave motion at saturation. Thg resuit is

SR LR LS SRR RO

(E l/Eul) = 3.5, a value nicely recovered upon comparison of Figures 3 and 6.

From figures 3 and 6 we also see that the energies Et2 and Eu2 assoc%ated

with the second harmonic compare favorably during the early phases of devel-

Bt 5 L S S0t 1 5,

opment, but depart from each other as the fundamental approaches saturation.
A spurious double hump arises in the theoretical predictions at that stage.
We discount the significance of the hump feature in tﬁe assessment of the %

nonlinear model on three counts, namely: i) the energy associated with the

harmonic remains small compared to that of the fundamental and exhibits

-25- g
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growth/decay trends apparently controiled by the evolution of the fundamental
interacting with the mean flow (Figure 3); ii) the qualitative agreement be-
tween the results of Zabusky and Deem (1971) and those of Miura and Sato
(1978) confirms the secondary impact of the harmonic upon the saturation and
post-saturation evolution of the fundamental, i.e., on the processes which
underlie the subharmonic generation mechanism proposed and addressed in this
paper; iii) the double hump feature, wivich repeate.:v arises in calculations
using a truncated Fourier series representation of nonlinear wave motions
approaching saturation (see sectior. 5), is eliminated in unsteady twodimen-
sional flow simulations, which do not introduce the truncation approximation
(see Zabusky and Deem 1971). Thus, truncation and the attendant neglect o”
the higher harmonics are responsible for the observed divergence between

the energies Etz and Euz; however, the approximation does not obscure the
essential aspects of nonlinear instability evolutfon evidenced by the calcu-

lations and indirectly confirmed by the experiments as discussed below.

The prime aspect of finite amplitude instability dynamics resides in the pre-
viously noted,relatively rapid,evolution of the curvature Uyy of the mean
velocity profile within the critical layer of lateral extent §(t). We have
indicated that Uyy undergoes rapid:change when and if the nonlinear instability
attains a smali, but finite, amplitude a(t) such that a uy(o,r) s(t) » 81(1);
conversely, the test a Uy(Q,T) 6(t)<<Bi(T) defines the conditions under which
weakly nonlinear models may be emnloyed to realistically describe the structure‘
of the unstable wave motion. Beyond that threshold equations (13) and (14) show
that the overall flow evolution becomes characterized by a time rate of change
of mean flow vorticity within the critical layer Bi"Uyt = o(6?) = ofa(t))
comparable to that of the disturbance amplitude 8,~'(da/dt) = a(t), but a

time rate of change of the y-derivative of mean flow vorticity B‘.'l Uyyt =0(§)

b L £ ot . ol
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larger than either of those two within the critical 1cyer. Clearly, the
total vorticity V2 in that layer is then describrd by

% ' where Q; denotes - function which is of order uniiy together with its _- ]
Y-derivative with respect to the stretched coordinate §
Ve (ot a2 y = (yre) O (33)
. : : y'©? 3
g ' across the critical layer centered at y = 0. If the considered instability, E
§~ i characterized by 3
2 s0(x.y,t) = a(t) [cosax + o(3)]
) N §
_ in the neighborhood of y = 0, dominates the disturbance field, the velocities %
% within the critical layer ¥ = o(1) are to leading order é
u = Uy(O,t) X§ | (34-a) -%
g v = a(t)asinax L (38p) é
? : Conservation of vorticity then requires that the function @, defined by (32) §
b satisfy the equation : ‘
Qup *+ Yoy +sin g By + ol - (1+ ﬁf) F Q) =0 (35)
1 in "boundary layer" coordinates (€,Y,T) defined. by
i E=oax, . Y=1(y/8), dT = (aa/8)dt (36)
; the quantities
] ‘ ‘ -1 3
] ul(T) = [d log a (T)/dT} = Bi[ala(T) Uy(o,T)] 1/2 =’ Bi[aUy(O,T)G]/; (37-a). E
L uy(T) = - 1d Tog U (0,1)/AT) | (37-b)
§ % being of comparable magnitude < 1 under the considered conditions (81/6) <1.
2 ‘ '
: -27-
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v

, Inspection of (35) readily suggests that, due to the vorticity transport
sing niy' the form of its solution, periodic in g over the wavelength 2n of a

dominant monochromatic input disturbance, {s necessarily

8, (g.v.T) = 2, (%) (v,1) + 1/2[":;"1 o™ e e (38)

_ even though 91(") (v,0)= 0 for n 2. Thus, harmonics are forced by the
é E noted transport within the critical layer. Substitution of (38) into (35)s ..

3
:
3
3

and inspection of the attendant equatiuns for the functions ni(n) (Y,T),
readily show that the forced vorticities a(T) 91(“) (Y,T), n » 2, become of 4

order a(T) after time intervals T = o(1) and, by that process, harmonic pertur-
f .bation velocities of order a3/2(T) are generated at the edges of the critical
layer. Accordingly, harmonics observed in experiments and determined in

nonlinear calculations should exhibit amplification rates approximately 1.5

times as large as that of the dominant fundamental. This is,in fact, the

A A 40 9, e 4

trend evidenced by the results of Figures 3 and 6, and, more generally, by
Miksad's (1972) observation that "the measured growth rates of harmonic modes

% range from 1.15 to 1.73 times that of the fundamental” in transitional mixing ]

1

layers monochromatically forced at various scaled unstable frequencies. The

scatter of the observed growth rate ratios about the value 1.5 is not sur-

SRt Y (A HE L Gl

- prising because different 'histories of the parameters ul(T) and uz(T) pertain
% Co to different situations; accordingly, the components an)(Y,T) of the solution

(38) vary frnm case to case and so do the ratios between pairs of attendant

forced perturbation velocities and energies.

The important role of nonlinear vorticity transports within the critical layer

ar

in determining the . behavior of finite amplitude instabilities and associated

harmonics was recognized by Robinson (1974) who, in fact, proposed an asymptotic
-28-
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solution to a reduced form of equation (35). In that context, Robinson

reached several perplexing conclusions, which contrast with experimental

evidence and, thus, warrant specific comment. At issue, are the conclusions

that: i) the temporal growth rate of instabilities with wavenumber close
to the marginal value 1 fon a tanhy mean. velocity profile should be

¢y = - 3(a- 1) instead of cy f—0.637(d- 1) as predicted by linear theory
and indicated by experiments (Miksad 1972), at least in the early phases
of nonlinear -amplification; ii) no spatially amplifying solutions should

exist in the nonlinear range even though data, such as those of Figure 3,

clearly display their presence; iii) fhe harmonics, forced by the nonlinear

redistribution of vorticity within the ~ritical layer, should amplify at a

rate exactly 1.5 times as large as that of the dominant fundamental,rather than

the varying, although comparable, rates noted and rationalized above. Rejection

of these conclusions is suggested by the following critical review of

Robinson's solution.

A change of independent variables from (&, Y,T) to (E,?, T), where

-~ -iz.
Y = 5 + cos &
denotes a scaled stream function in the critical layer, reduces (35) to

the equation

Y2.,.12 .
Bt Yt w00y - Qrg- )y a51=0

In turn (39-a) reduces to the equation (4.28) of Robinson, namely

i
gty (85 - 295 ) =0

under the assumptions/approximations that

a =], Uy(O;T) =1, UZ(T) = niT (Ea ?, T) =0

-29-

(39-a)

(39-b

e e o me i+ a4 e
B s S
- T g

.
+ bt B L

ol s e edenin




Ll

R M L Lt

KL

NYU/DAS 81-06

whereupon the parameter ﬁl = t:il’t'll2 in his notation. Robinson determined

an asymptotic solution to the reduced equation (39-b) for ﬁl << 1 subject to
the boundary conditions that, as $¥+ o, the vorticity Q matches a time
{nvariant mean vorticity distribution upon which is superposed the vorticity
of a linear instability having a time invariant wave motion as well as a

time fnvariant amplification rate 81‘ Clearly these boundary conditions do
not de.cribe the actual state of affairs for even the weakly nonlinear Meksyn
and Stuart model predicts that neither the mean flow vorticity (Figure 7) nor
the structure (Figure 5) and amplification rate (Figures 1 and 2) of the un-
stable wave motion remain time invariant outside the critical layer. In fact,
Robinson's results contradict the assumed asymptotic behavior for they reveal
a velocity jump of order a‘3/2(T) across the critical layer, a jump which is
assumed to be absorbed by the unspecified, and unfortunately neglected,

"(a) spreading or contraction of the basic flow, (b) similar spreading or con-
traction of the fundamental disturbance," as well as by the introduction of

all higher-harminics outside the critical layer.

The inadequate boundary conditions lead to an asymptotic solution for Q;$§,Y,T)
which, according to Robinson's equation (4.48), is completely defined by‘the
instantaneous value of the parameter ﬁl(T), independent of initial cgnditions
and/or previous evolution of the disturbance. Whereas this behavior is incom-
patible with the indications of either nonlinear models or experiments -- which
unequivocally show an influence of prior history unon the evolving structure of
nonlinear unstable wave motions -- the particular nature of Robinson's solution,
as well as the resolution of the perplexing conclusions it leads to, become
apparent. In connection with the conclusion i) we note that the redistribution

of vorticity within the critical Yayer of an evolving nonlinear instability must

-30-
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be determined by solving equation (35), where the time derivative Rt is re- %

tained, and not the Robinson's equation [(30-1) in this paper], where Qyp s

neglected. Retention of the time derivative allows the structure as well as E

the amplification rate of a non\fnear instability with initially small ampli- 3

tude at first to follow, and then to depart from, the predictions of linear

theory. In connection with the conclusion 1) we note that the strong inter- ;
i action between, and the concurrent evolution of, the mean flow and the wave ' §
motion structures require that a realistic description of the spatially devel- =~
? 3 oping twodimensional mean flow be recognized and included in the derivation of

the vorticity conservation equation within the critical layer of spatially

{ amplifying nonlinear instabilities. So]ut1ons'exh1b1t1ng spatial amplification,
| fixed temporal frequency, but gradually varying wavelength, may be gleaned,

Aot and anet i bttt ettt

albeit laboriously, for such an equation -- but not for equation {35), which

is predicated on the assumption of streamwise homogencous mean flow. Finally, ;

R T T v AR T T PPPT

in connection with the conclusion 11i) we suggest that Robinson's prediction |
i % of a fixed value for the growth rate ratios of the harmonics stems from the local
| similarity character of his solution, only dependent on the instantaneous é
value of the parameter ﬁl‘ Experimentally observed growth rate ratios scatter
around that value because the actual hammonic forcing process, described in a

previous paragraph, does not okey local similarity.

o Aside from the controversial conclusions discussed above, the crucial short-

coming of Robinson's model resides in the poor comparison between its predic- %

tions and those of nonlinear models for the vorticity distributions associated

with nonlinear instabilities undergoing saturation and subsequent modulation.

.
gl

Nue to the unique dependence of Robinson's solution upon the parameter il

the comparison becomes especially strained at those post-saturation stages in

-31-
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the actual modulational evolution of the instability where 10 has the same
modulus, but opposite sign (e.g. t= 19.15 vis a vis t = 25.7 in Figure 2); E
as a consequence, the modulaticn itself is not predicted. Whereas that pro- %
cess is central to the cyclic mechanism of subhavmonic generation and vortex ]
pairing proposed in this paper, solutions of equation (35), subject to appro- a
priate time dependent boundary conditions, are prerequisite to a realistic
description of the vorticity redistribution within the critical layer of a
nonlinear instability. Unfortunately, such solutions are necessarily numerical :
and rather laborious, as they require the parallel consistent determination

of the matching, slowly varying, outer flow. Unified numerical analysis of

the critical layer and the outer flow by a fully nonlinear model proves more
economical in practice and, therefore, is adopted here. That consideration

notwithstanding, the inner/outer layer view of nonlinear instabilities is use-

ful in that it exhibits the vorticity redistribution mechanism operative within b
the critical layer as well as the limiting/dominant influence of that process

upon the growth of the instability and the forcing of the harmonics.

The conclusion, repeatedly suggested above,that only nonlinear models -- which do
not assume either local simitarity or self-preservation of the wave motion
structure -- realistically describe the evolution of nonlinear ihstabilities,

is also supported by an examination of the approximate model suggested, but not
applied, by Miura and Sato (1978). This model assumes that the evolviny struc- ]
ture of a temporal instability having wavenumber a may be approximated by

(see Equations (3.11) and (3.13) of Miura and Sato 1978)

e &,(y,t) = 2A(t) fly) exp [i8(t) g(y)] (40)

-32-
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and that the attendant harmonics may be neglected. Substitution of (40) into

E (29-a,b) then yields

) : t

uly,t) = U(y,0) + 2a(f2g*)*s A%edt
0

k-
3
E |
3

é (see equations (3.20) of Miura and Sato 1978) as well as two nonlinear ordinary
differential equations for A(t) and 6(t), which follow upon formal integration
of the real and imaginary parts of (29-b) over the width of the flow (see
equations (3.14) and (3.17) of Miura and Sato 1978). The stipulation (40)

kel S

clearly implies that the wave motion structure retains invariant spatial depend-

; | ences f(y) and g(y) for the amplitude and phase functions, respectively. The
;- { results of Figure 5a support this approximation for timés t € 13.5, prior to
saturation; and, in fact, an integration of the equations for A(t) and® (t) --
with coefficients based on functions f(y) and g(y) determined by the eigen-

£ ’ mode structure at t = 0 -~ yjelds reasonable predictions for the presatura-

tion behavior (Figure 2), as well as the saturation time and amplitude, of

ikt B e G+ e e

the test case instability repeatedly discussed in this section. Unfortu-

ki

] f nately,as shown in the next section, the assumption of invariant spatial depend-

ences, collapses at later times. As a consequenbe, our solutions, employing

the approximaté equations derived from (40), fail to reproduce the postsatura-

e e LB et S A e

tion. oscillations in wave amplitude and structure, which Miura and;Sato
claimed to extract, but did not caiculate, from their approximate model. Our
central interest in those oscillations, vividly displayed by Miura and Sato's

own solution of equations (29-a,b) as well as by more elaborate models (e.g.,

Zabusky and Deem 1971, Patnaik et al 1976), motivates our complete reliance

e

on the nonlinear model for the following study of the vortex pairing mechanism.
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5.  NONLINEAR MECHANISM OF SUBHARMONIC EXCITATION AND AMPLIFICATION

As noted in previous sections of the paper, measurements of time-averaged
properties as well as fluctuation spectra in forced and unforced, transi-
cional and turbulent, statistically stationary, spatially developing mixing
layers indicate that, at least for those situations where the forcing fre-
quency is smaller than the most unstib]e frequency at the initial station,

the specific spectrum of disturbances initially coupled to the flow has a
vanishing influence on the development of the flow downstream of the station
where two or more vortices first aggiomerate (Wygnanski et al 1979b, Ho and
Huang 1980). Following that event, the spatial growth rate of the forced
mixing layer thickness becomes essentially the same as that of the unforced
layer characterized by the same velocity ratio A= (U1 - Ué)/(U1 + Uz). The
finding is significant in that it associates a specific physical event -- one
ore more agglomerations ~- with the traditional observation that, following
some initiai relaxation distance, unforced mixing layers tend to grow at a con-
stant rate, which depends on the velocity ratio A, but is insensitive to

the specific initial conditions, transition tripbing device and environment of

small amplitude random external disturbances encountered in any one experiment.

Whereas the constant growth rate of the self preserving unforced mi;ing Tayer is
paced by a cyclic process of vortex pairing ov$r'statistioa11y averaged Tengths
which scale with the local layer thickness am[§nd the velocity ratio A, the
rapid onset of the same dominant process in forced mixing layers strongly sug-
gest that, after the first agglomeration, the history of the large-scale
structures/vortices becomes governed by a self-reproducing limit cycle of non-

linear instabilities, viz the cycle already described in Section II in the

-34-
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course of introducing and justifying the nonlinear model used in the present
paper. The key features of the cycle, which we seek to analyze and demonstrate

here, are: {) the self-induced modulation of the nonlinear instability

TR

responsible-fof an agglomeration of vortices in the mixing layer combines
with the concurrent distortion of the mean flow to provide intrinsic excita-
- tion of subharmonic, spatialily amplifying. instabilities having about half
the frequency of, but nearly the same phase velocity as,the self-modulating
wave, hereafter identified as the fundamental; ii) the initial finite ampli-

tude,phase and structure of the subharmonic wave motion produced by the

B

modulation of the fundamental-independent of either local or previous random

f external forcing at the appropriate frequency -- are conducive to nonlinear

amplification of the subharmonic, which draws energy from tha fundamental as

AT T w1 e

well as from the mean flow; iii) because of the specific phase relationship

f § between the fundamental and the amplifying subharmonic, pairs of vortices, pre-

mental becomes essentially extinct, while the subharmonic becomes dominant;

iv) due to this predominance and to the self-limiting nature of the subharmonic

growth -- necessarily bounded by the finite amount of vorticity available to
the wave within its fixed wavelength -- specific structures of the mean flow
and of the wave motion evolve at subharmonic saturation, viz structures which:

are conducive to the seif-preserving repetition of the instability cycle because

they reproduce, except for a doubling of the length scales, the state of

motion prevailing at the earlier time of fundamental saturation.

. Representative time dependent structures of the mean flow and of the wave motion, ;
which evolve upon saturation of a dominant finite amplitude instability, are

illustrated in Figures 2, 6, 8 and 9, which display the long time evolution

-35-
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(t‘g 13.5) of the specific, temporally developing,shear layer discussed in
Section 4, viz the flow, bounded by rigid plates at Yo © + 3.875, which
evolves from the initial mean velocity field U(y,0) = tanh2y and the super-

posed unstable eigenmode with o = 0.8892, g(0) = O + -.37841, € = 0.1,

' ¢1(0.0) = 0.1, under the assumption that the motion remains at all times

spatially periodic with wavelength (2/a). Clearly the vorticity distribu-
tion achieved at the time when the instability first saturates is not in
dynamic equilibrium for the mean as well:-as the wave motions undergo subse-
quenf structure/amplitude modulations with period Thu” 17, about 2.4 times
as long as the period Tf==7.06 of thc considered instability propagating
with phase velocity c;

U(y,8) = (1 + tanh2y). -Although periodic, the noted modulations are not

= 1 in the mean flow of initial velocity profile

strictly sinusoidal: for example, Figure 2 shows that the stationary value
/
of the y-derivative of the phase function on the axis y = 0/

G (0st) = {(3/3y) tan'l(Im[¢1(y,t)1/Re[¢1(y.t)])}y=9 |

occurring at t = 19.15 precedes the zero of the same function (and the concur-
rent minimum of the disturbance energy) occurring at t =22 by a time interval
At = 2.85, /which corresponds to a period ]“L'= 11.4. Thus, the modulation
encomﬁasses a band of frequencies centered around 41 /(Tmu + Tmt) = 2H/Tma,
where Tma’ 14.2. Since the period Tma =2 Tf almost exactly, the frequency
spectrum of the self-modulating wave motion in the flow characterized by the
initial mean velocity ‘U(y,0)\= (1 + tanh2y) would then exhibit - in additon
to discrete peaks at the frequencies(Znn/Tf) oﬁ the dominant wave (n = 1)

and its harmonics (n> 1) - a band of width + O.é (n/Tf) centered at the
frequency (n/Tf) of the 1/2 subharmonic. Interestingly enough, the excitation

of just such a frequency band is displayed by the spectral measurements made

-36-
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downstream of the station where the fundamental saturates in a transitional mixing
layer forced at the most unstable frequency (see Miksad 1972, Figure 8, x> 11.5)
Since an approximate doubling of the Qavelength relative to that of the funda-
mental is inherent to the subharmonics observed in the experiments, but not to
the modulation of the time-developing shear layer considered in the calculations,

some reflection on the stipulated equivaience between temporally and spatially

developing flows is in order.

i

[ = L n o
b S AR it IR G U i e e s g o oL

o et bbb bt thisl

For simplicity of discussion, the relatively narrow band of modulation frequencies
exhibited in Figures 2, 6, 8 and 9 is compressed into the centra? 1/2 subharmonic
| with strictly trigonometric time dependence. Accordingly, the structure of

the temporally developing flow at times T = (t - ts) 20 (where ts = 13.5 corre- _
sponds to saturation of the fundamental) is approximated by

u(y,E) = vl () + e y) ™ Ts 4 c.c.) (41-2)

5¢1(yv€) e\GX = 5¢1(0’3-€) [¢1(.Y ;f)/q)l(o\?f)]e.lax =,
(41-b)

,

(005, 0,8) o1% = cto, ) + 10,V T 4 ccay

GO0 + 5,00) +5, 0) TTE wced 15N 0TI s’

the complex functions/quantities U(m)(y), ¢i(m)’ $1c(m) (¥), $15(ﬁ) (y), m = 0,1

being defined by

m B - “—
o™ (y) = (2 1! i T uy. g T g (42-2)
|
i -37-
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Am) -1 21 . fmmt/T - ‘
¢ = (2T f ¢1(q,t) e f dt (42-b)
740 _ |
(m) I 1 e '
3.0 = @)t s Reldy v EN ™ Te (42-c)
.A ! |
' e o T, o
5w = ™ £ B e (42-d)
S 0

Calculations, as well as inspection of Figures 2, 6, 3 and 9,indicate that
1)) 2 1 0 « (1 T - - (o
1= o) fe Vi<t 6, 18, M= 0lx(8, (1 ane 15,1117, or

the problem on hand. Thus, if only terms of first order are retained in the

modulation function/quantities characterized by the superscript m = 1, ihe

stream function ¥ (t) descriptive of the time developing flow in the domain

T 2 o may be cast in the form

; “ . "' y y ‘4 ‘ sin ¥
$ 0D vy + B = p U ey § o2 0y aye B2 4

-y, -y, |
W | N (23)
5 f'.-‘ (i) (y)ei [GX‘(I"j)Brf]_‘_ c.c.}
2j=1,2,3 1! |
where B, = Zan’iand
VB = o D7 g Oy 1) 5 ) (44-2)
fl(l) (y) = ¢1(0) $1C(0)(y) (44-b).
88y - 41 5, Oy v 7, 1) () (44-c)
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; This approximate representation, tcgether with the results presented in

g | Section 4, provides the context for examining the structure of the
laboratory mixing layer and the applicability of the equivalence in the
;patial qomajns Xy s Xy and xL" 25 Lhich respectively, correspond to

£<oand T >o.

The equivalence of temporally and spatially developing flows presumes that the
approximate relationship between Tinear temporal and spatial instabilities estab- ;
lished by Gaster (1962) applies as well to the nonlinear flows considered here.

Accordingly, the stream funct1on w(t) (x,y,t), which describes the evolving E

et bl i bt i il

1 g ' structure of the theoretica], monochromatically forced, unsteady shear layer

viewed in coordinates (x,y) moving at the phase/group velocity cp=cg=(8rﬁa)=1

] l of the forcing instability with real wavenumber q and complex frequency (Br+ 131)

b i b et

and the stream function'$(s)(x > Y tz), which describes the structure of the
experimental, statistically stationary, mixing layer viewed in laboratory fixed

coordinates (x ,yz) andsubject to the spatially amplifying instability with

sttt e bl v i

| complex wavenumber g +ia1 a[l-+1(3 /B Y] real frequency Band nearly coinci-

!.
dent phase/group velocities c

T TR Ty, 4

e

=C sB/a'_l, are related by

5 p>-g o

: |

Nk )(ax, Y s,.t) - 3! (ap X, = Btys ¥p» ap X,) - f (8/a,) dy,  (45)

% . when the zero of t, is chosen so that o £
| #axa v, 0) = nTn(S)(-Btz. Yg» 0) - "(B/a Yy, :

| _yzw

However, (45) has a limited domain of validity, as discussed below.

E A first limitation to the equivalence becomes manifest upon inspection of the - é
eigenfunctions and eigenvalues calculated in the linear limit: for the initial

- mean velocity profile U = (1 + tanh2y) considered here, only spatial and tem-

; : poral instabilities with dimensionless frequency Re(B) 0.8 approximately

satisfy the conditions on wavenumbers, wave velocities and wave motion $truc-

tures prerequisite to (45). Spatial instabilities which comply with the
-39-
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? ’ equivalence conditions at small amplitudes (xb = o) continue to do so in the
s ; process of nonlinear growth and saturation at stations Xg 5 Xo® In that domain %
: ., ; the phase and group velocities of the spatially amplifying waves remain essen- ,é
: | tially invariant because the effective wavenumber 'ue(xm) = [“r nyo,o)luy(xl.o)l §
; increases with x,. The velocity field within the critical layer may then be ;
- ; . 3
- approximated by ]
3 : i ;
SRR ' ! ‘ '
L ‘ up = (8/a.) + U (xg:0)yg = 1+ Uylxy, 0)yy,
S and the vorticity field by S
L - | -
I 25 (8) = U (0 (s)
Vg yps ty) = U000+ alxy) @77 (xg, Yo m) 3
% ‘ where n = (ar-xz -Btz) and ngs) denotes a function assumed of order unity é
? ' together with its derivative with respect to the stretched coordinate 3
: V= QU (xgs 0)/alxg )% yy = [y, /8 (x))] i

! across the critical layer. To a first approximation the function ni(s) - é
; ) . which describes the concurrent nonlinear spatial evolutions of the (time

: averaged) mean flow and the wave motion within the critical layer -- satisfies

| the equation ?

. !
| (s) (s) : (s) (s) Yo (s)y o /
Riy) * Yoyt + syt v uglett (e w1 = 00 1 (46)

E ; in boundary layer coordinates (X, Y, n) defined by dX = (°r2 a/BG)dxz.
% b Y = (yy/6)s n =(a, xo - Bty), the quantities
- !
. ) = 4 loga(x)/dXl, w,= - [d log U (x,0)/dX)
= ) l ! j
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being of compereble-magnitude‘<1 in the domein of nonlinear growth. Equetion
(46) 1s formally identical to the equation (35) previously derived for tempor-
ally developing shear layers, aod so are the aftendant inftial conditions that
tq(s)(o. Y,n) .be. periodic innas well as the boundary conditions that for

Y +2w, the ve]ocities and vortjcity assoojated wdth 8 (‘)(x Y.n) match

those associated with a mean flow slowly varying in x plus a superposed spa-
t1e1ly amplifying weakly nonlinear wave having £1xed frequency B and wavenumber
“z
t<o, and equivalen(:e is preserved in those domains.

The. equ'lvalence becomes suspect for "z > Xps because'the structure of the

laboratory mi xing leyer predicted by (43) and (45)

(s)(x,'.yz. t) f ". IU(")(y) + (8/0,.)1 dy, *+

{[f. (‘l)(y )e~ i(B/Z)(t zs)

Zf% u(n(),)‘,‘v 1(8/2) (£, zs)] 1) (o X, st,) R 49§

Y, ew

-

losés strict‘ time periodicity at the forcino frequedc&' B, hﬂeﬂehe t!;eoret;icai
time deve]oping shear layer retains spatial periodicity with the 1n1t1a'l -
wavenumber a. In addition to the fundamental -- with fixed amp]'itude, struc-
f.ure fl( 1)(ym) and ‘requency g -- (47) indicates the presence of the 1/2 and
3/2 harmonics, with strqctures subject to a slow time modulation at the

frequency 8/2. Linear analysis readily shows that, for the preva'lli_ﬂh mean

velocity profile [(B-’ar) + U(°)(y£)] » the 1/2 harmonic constitutes an admissi-

ble temporal as well as spatial instability with nearly equal phase and group

velocities cp =cg =(B/°‘r) practically coincident with those of the .
-4 -
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that varies s'lonl,y with X.. As a result Qi(s)(x, Y,n) = o,(T Y.E) for x, "zs'é

. . .
it o ot e il b bl 1 s

adens Kanbiddlvs 5 1 it




e T et

TR ———

i ?—':-".'-0‘\- L4 '\“f'!--’w

“1

NYU/DAS 81-06

dominant fundamental, but the 3/2 harmonfc does not. The possibility then
arises that a time-modulated, or intermittent, excitation of the 1/2 subhar-
monic instability occur at appropriate downstream stations in a spatially
developing mixing layer dominated by a finite amplitude large scale instability
as the counterpart to the temporal modulation of the fundamental wave motion.
structure in the equivalent temporally developing shear layer. Shoﬁld the
subharmonic instability become amplified, the equivalence between the two

flows would clearly be broken.

Linear analysis fails to indicate whether and when the 1/2 subharmonic is ampli-
fied because the stream function of the associated, slowly modulated wave

motion with real part

wre(f,(1/2))s 4-3; ut1) dy jcos B (t, - t,) + n(f,(Y2hsin B (t,- t,) (a8-a)}
-yg'w

and imaginary part:

y E
i, (12)) cos & ¢, - ty) - WRe(r,(V2)) - %[ u(D) gy 1sindlr,-t, ) (48-b)

-y
W
carries little resemblance to that of a linear wave at any time 0 < (tz - tz

;)
< 47n/B8. This structural difference also prevents the adoption of either Kelly's
(1967) theory or its extensions in terms of weakly nonlinear multiple scale
models of secondarv instabilities (e.g., Nayfeh and Bozatli 1979) to determine
the param teric amplifier action, if any, of the coexistent nondispersive finite
amplitude fundamental. Seemingly, the only resort then resides in nonlinear
numerical calculations, which in view of the nondispersivé nature of the funda-
mental and the subharmonic at the considered stage of flow development, may be
based on the heuristically equivalent, time-developing, nonlinear flow model of

equations (29,a,b,c,).
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Numerical experiments, involving the integration of (29-a,b,c) subject to

the distinct sets of initial conditions which accrue when the mean velocity
field and the fundamental wave motion displayed in (47) are combined with the
subharmonic wave motions indicated by (48-a,b) for distinct times tz; 1nd5cate
that, subject to « variable time delay generally shorter than (2/8), nonlinear

effects cause the subharmonic to undergo a strong nearly exponential amplifi-

cation with characteristic time comparable to (2/8) for those initial conditions

which pertain to times t, in the interval roughly bounded by -(n/8)<(tz - tzs)
< (w/B8).* Since those initial conditions reéur with a time period (4«/5)
according to (48-a,b), strong, but infénnittent, subhannonic growth is indicated
for the region of the laboratory mixing layer which extends'approximately (Zn/ar)
downstream of the station Xg = Xge where the forcing fundamental saturates. Such
a region of intermittent nonlinear subharmonic excitation/émp]ification -= inher-
ent to the evolution of the fundamental and independent of external forcing at
the appropriate frequency -- has been observed by Miksad (1972, p. 714) in
transitional mixing layers. Its occurrence and interpretation are quite signifi-
cant in our view of mixing layer dynamics because they provide the first two ele-

ments of the self-reproducing nonlinear cycle of large scale instabilities which

we seek to demonstrate.

2 nonlinear nature of the subharmonic excitation/amplification procéss requires
that it be analyzed in the context of the concurrent changes in mean flow

and fundamental wave moticn. The intermittent activity'bver the noted distance

< strean of x,¢ admittedly precents the exact simulation of that region of the

*A reexamination of the evolving structure of the fundamental w?x? motion prior
to saturation (see Section 4) shows that _the stream function ¢ is adequately
described by the approximation (43) for T >-(m/B).
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laboratory flow by a single, equivalent, time-developing shear layer having

the streamwise periodic structure attendant to superposed sinusoidal funda-
mental and subharmonic waves. quever. intuition as well as data (e.j3., Figure
3) suggest that only a modest amount of energy accrues to the subharmonic in
the region of intermittent activity. An approximate simulation then seems
plausible, especially if attention is focused on the flow structure which

ultimately evolves upon fin1te ambl1tude growth and saturation of the subhar-

monic. In that connection a station Xo0 is chosen within the region in question

downstream of Xpg non-intermittent activity is assumed to begin at that sta-
tion, and effective initial structures are prescribed there for the time-
averaged velocity profile as well as for the fﬁndamenta] and the subharmonic
wave motions. Given the small energy accrued to the subharmonic, the effective
initial structures may not differ substantively. from those indicated by (475;
accordingly, a parametric study need only consider moderate variations in the
partition of energy among the modes and in the structure of the subharmonic wave
motion from its time-average during the periods of activity. Limited numerical
experiments indicate that such variations have 1ittle influence on the ultimate
development of the flow. In the absence of a cogent criterion to quide the
choice, only the representative results of a single approximate simulation are
therefore reportedand discussed below; the pertaining initial conditions are:
i) Xoo = Xps ¥ (n/ar); (ii) structures of the mean velocity profi]e;and of
the fundémenta] wave motion as displayed in (47); iiti) structure of the sub-

harmonic motion as indicated by (4.) for (tz - tns) = 0:

The structural evolution of the equivalent temporally developing flow, which
ensues upon excitation of the subharmonic, is illustrated in Figures 10, 11 and
12. Inspection of these figures elicits several commerts. Clearly the subhar-

monic amplification and saturation constitute strongly nonlinear processes

-44-
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accompanied by large changes in the structures of the mean velocity profile

as well as the fundamental and the subharmonic wave motions. The salient conse-
quences include: i) the binary merging of the vorticity concentrations generated
by the preexisting fundamental which, in fact, transfers most of its energy to ]

the subharmonic as the latter approaches saturation (Figure 12); ii) an increase

Y TP D R T Y ([T AT

in the mean flow vorticity thickness 6“.which, at subharmonic saturation, becomes

RT3 T e

very nearly double that prevailing at fundamental saturation (Figures 8 and 10);

dudied i e ettt L i e do .| b itilten

1 :

% | ii1) an evolution in the subharmonic wave motion which, consistent with flow se]fr;
g preservation, acquires at saturation é structure and an energy which are, respec-.!
i tively, equal and double their counterparts in the fundamental wave motion at its g
g saturation (Figures 9,11 and 12); iv) a se1f-induced modulation of the mean and %
% { subharmonic wave motions which follows subh~rmonic saturation and, consistent

?l é with the flow structure and the time/length scales attendant to that event, causes é
% A E first the intrinsic excitation of a 1/4 subharmonic wave, and then its evolution E
é i with a life cycle dynamically identical to that of the subharmonic. In combi- é

nation these processes complete the demonstration of the proposition that a

BB oty

single self-reproducing cyclic process of 1/2 subharmonic excitation, amplifi-
% ‘ cation and quenching controls the evolution of large scale coherent structures

as well as mean flow in spatially developing mixing layers.

et i L b G 2 2t 529 47 e

Disagreement between relevant experimental data prevents a definitive quantitative

evaluation of the analytical results for the nonlinear wave cycle. The sub-~

3 i
¥
-

-
..[.

harmonic - amplification rate displayed in Figure 12 ‘s measurably larget than
that reported by Miksad (1972) and reproduced in Figure 3, but agiees nicely

with that observed by Ho and Huang (1980, see Figure 17) in mixing layers

forced at frequencies slightly below that of makimum amplification. The apparent
contradiction may be facility related. Both experiments ware carried out in

channels with relatively small cross-sections, viz 12.5 x 13.5 cm for an
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estimated vorticity thickness 6, 3 cmat subharmonic saturation in Miksad's
] ; case and 10 x 10 cm for 6m ¢ 1.2 ¢m in Ho and Huang's case. As Miksad points

out, cross-stream boundaries then exert spanwise constraints on the three

dimensional secondary instabilities with large spanwise wavelength (see Browand

15 TR, ¥ | R " e

and Troutt 1980, Figure 6) which arise in the course of subharmonic amplifica-
tipn, and cause skewing as well as apparent branching of the large scale struc-

tures (see Miksad 1972 Figure 24 as well as Browand and Troutt 1980). Accord-

Ml aciria pa i . srdct bieriEld
Rty ,

ing to Miksad "the onset of spanwise activity coincides with a noticeable

sy

< : decay of fundamental mode energy along the center-plane"; however," ".r m.s

g : wave-front measurements indicate that this may be due to a spanwise redistribu-
% [. tion of energy and not to a transfer of energy to other scales of motion." Thus,
% it is possible that the subharmonic amplification rate measured by Miksad in

é } the center-plane of his facility, with a ratio (d/aw):=4 hetween channel width

] ? d and mixing layer thickness bw, may not represent either the spanwise average

value or the value appropriate to a flow free of lateral constraints} ﬁy

A contrast, the rate observed by Ho and Huang with (d/am) = 8 may not be subject to
g _i such adverse limitations. Admittedly this is only a conjecture. However, a

| stronger argument ma; be made in support of the calculated results and Ho and
Huang's measurements by examing the average spatial growth rate of the mixing

layer over the interval between fundamental and subharmonic saturation. For

WIPTIPIFCr TP T IO 1

the mean velocity profiles shown in Figure 10 and the considered ve]bcity ratio

; | A = 1 we obtain

% : (de/ dx) =(de/dt) =(1/4)(d6m /dt) = .03

. a result which scales in the lower range of the experimental observations reported
by Brown and Roshko (1974) and Browand and Latigo (1979), if the growth rate of
the integral (momentum) thickness 6 is assumed to depend linearly on A. Thus,the

{ the most commonly measured gross feature of mixing layer development is fairly

reproduced by the model and calculation presented here.
-46-
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6. DISCUSSION

The results of section 5 indicate that the growth of spatially developing
turbh]ent mixing layers is controlled by a self-reproducing deterministic, non-
1inear wave mechanism whereby seduential1y subharmonic, large-scale, finite
amblitude instabilities are caused to follow a well defined excitation/ampli-
fication/quenching 1ife cycle, which renders them sequentially dominant. The
key to the mechanism resides_in the strongly nonlinear nature of the inter-
actions |between, and the concurrent structural evolutions of, the mean flow
and the locally dominant wave motions. The salient consequences of those
nonlinearities include: i) the achievement of negligible dispersion between
a dominant instability at/near saturation and its 1/2 subharmonic, provided
the frequency of the fundamental fai]s in a range to be discussed below;

ii) the onset of non-stationary mean and wave motions upon saturation of the
dominant fundamental, and the consequent intermittent excitation of 1/2 and

3/2 harmonic wav * motions having well defined structures; iii) the approximate
doubling of the mean flow thickness and the niear complete draining of the
fundamental energy, which accompany the amplification/saturation of the unstable
subharmonic dand permit the self-preserving reproduction of the (subharmonic)
instability excitatiqn/amp]ification/quenching processes in sequential cycles

distinguished only bj a sequential doubling of the length of scales in;olved.

The deterministic and skeletal nature of the proposed cyclical instability mech-
anism -- ascribing a significant role to a discrete, two frequency, spectrum

of two dimensional waves in each cycle -- has distinct implications with regard
to the dynamics of turbulent mixing layers and their amenability to control.

The quantitative pursuit of these implications is béyond the scope of the pre-

sent paper; however,some relevant qualitative trends may be gleaned from the
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i | available results. The first comment in this connection concerns the expected

behavior of transitional mixing layers monochromatically forced at unstable
frequencies B other than the Bn pf maximum amplification considered in our

calculations. Since the growth of any instability is limited by the finite

. amount of vorticity available to it within a wavelength, one anticipates that,
! in accord with the observations of Miksad\ (1972, p. 712), the saturation ampli-

tude of a forced disturbance increase as its.frequency decreases. The mean 3

T T r— '

flow distortion (increase in sm), which accompanies the growth of the instability

and is geared to its saturation amplitude, is also expected to increase as

JRPT R TR S T S

I T

the frequency decreases. As a result, conditions conducive to the excitation

of a 1/2 subharmonic, having nearly the same propagation velocity as the

[RENEIV

TRy Ty

forcing fundamental, and the attendant initiation of a nonlinear subharmonic

generation cycle,may be anticipated for a finite range of/forcing frequencies

FIRY S

TN T TR T gy

' | about Bm. The experiments of Ho and Huang confirm this expectation for

it st L1 SELG il et

; f (8,/2) <B < 83 the range of admissible frequency g > B remains to be deter-

mined by either calculation or experiment.

"
i 2adit ot all m i

o For a specified initial mean flow, forcing at different frequencies in the ]
: ‘f aforenoted range results in initial mixing layer responses, hereafter identified !
as mode 1, which are qualitatively identical, but quantitatively different ;
because each frequency possesses a specific admittance, amplification rate, é

saturation amplitude and rate of energy transfer to its subharmonic. However,

Eibia s dee s ibcp o mly il 0 LT

the frequency sensitivity should largely vanish upon the first vortex pairing
because the subharmonic responsible for that event, saturated at a se1f—11miting' i
amplitude consistent with its wavelength, combines with the attendaht commen-

surate distortion of the mean velocity profile to yield a flow structure which,

{
in coordinates scaled to the local mixing layer thickness, is independent of the
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initial conditions. If the nonlinear instability cycle proposed here is
operative, the development of the flow, downstream of the station where vortex
pairing first occurs, should then become self-preserving and 1ﬁdependent of

the specific transition prﬁcess. whether forced or natural. This :self-pre-
serving behavior, which is the cornerstone of the proposed model, is manifested
by the measurements of Ho and Huang (1980) in forced flows, as well as by

Broward and Latigo's (1979) observation that, in naturally developing flows
subject to distinct initial conditions, the.mean velocity distributions achieve
an equilibrium shape in coordinatus s;aledlto the local mixing layer thickness
after two vortex pairings, and the disﬁributions of rms longitudina1 fluctuations

as well as Reynolds stress do so prior to the third pairing. Consistency with

the proposed mechanism is thus indicated, but not conclusive support. c1ear1y o

the suggested predominance of a deterministic two dimensional instability

. cycle involving a discrete two frequency spectrum must be reconciled with the

experimental evidence that mixing layer turbulence is random, three dimensional
and broad spectrum. This reconciliation is pursued below following some addi-

*jonal discussion of initial mixing layer responses.

Ho and Huang (1980) point out that the initial respanse changes at low forcing
frequencies B € (Bm/2).* Different modes, designated by n=2,3,4, arise for
different frequency ranges Bm/(n+1)§sgem/n. Due to the receptivit,\‘! and ampli-

fication characteristics of the flow,the nth harmonic of the forcing frequency

dominates the initial development in mode n. In the higher modes (i.e. n =3,4)

the (n-m)>1 harmonics also appear and initially dominate over the forcing

*Attention is here restricted to small amplitude forcing, which has a small
influence on the spatial evolution of the instabilities compared to their
interactions with the mean flow and with each other. The collective inter-
actions, which sometime arise under large amplitude forcing (Ho and Nosseir

1981), require separate analysis.
-49-
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frequency; however, their energies and amplification rates remain distinctly

X smaller than those accruing to the nth harmonic. This "response" frequency
; é} | then amplifies and saturates along the lines discussed in Section 4, with
g { little interference by the other instabilities simultaneously present in
i g the flow; as it so evolves, it generates vorticity concentrations as well
| ¥ as mean flow distortions, which tend to eliminate the initial differences be-

tween the phase velocities of the various instabilities.

P4

According to the considerations set forth in a previous paragraph, the flow

- T T AR R

distortion attendant to the saturation of the response frequency eliminates

e

the dispersivity of that wave relative to its 1/2 subharmonic, which coincides

with the forcing frequency in mode 2. - Binafy vortex merging then ensues in

R R

]

3]

4
i
!
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[
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3

j

3

.

i : mode 2, much along the lines repeatedly discussed in this paper, but without

i : . the delay required for intrinsic excitation of the subharmonic, which is now

i forced and amplified ab initio. ® the forced subharmonic saturates at its self-

i Timiting amplitude, conditions conducive to self-preserving development of the

flow are recovered upon the first vortex pairing. The ensuing development
§ f must be the same as that of mixing layers initially responding in mode 1, and

that is the case according to the observations of Ho and Huang (1980). -

In mode 3 the saturation of the response frequency is also followed by the
continued growth of its 1/2 sulharmonic, forced and amplified ab initio in
the mixing layer. However, that process does not proceed to self-limiting
saturation as in mode 2, because the attendant mean flow distortion eliminates
the dispersivity of the forcing frequency relative to the response frequency

and the 1/2 subnarmonic. A three-wave nonlinear interaction then arises, E

which results in the merging of every triad of vortices generated by the
response frequency. Since the rate of energy transfer amcng the three inter-
acting \waves. depends upon their phase relationship, the pattern of merging

varies from event to event: in most cases two members of the vortex triad
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merge first into a new vortex, which then coalesces with the third member;

occasionally, all three members|merge at the same time. In all cases the waves

at the response frequency and its 1/2 subharmonic become largely extinct upon
completion of the merging, while the wave at the forcing frequency becomes
distinctly dominant, reaching saturation at a self-1imiting amplitude consistent

with its wavelength. This saturated wave combines with the attendant commen-

“surate distortion of the mean flow to yield a flow structure which, when viewed

in coordinates scaled to the local mixing layer thickness, is largely identi-
cal [to those encountered at subharmonic saturation in modes 1 and 2. Self-pre-
serving development of the flow is then regained downstream of the station
where the vortex triad coalesces, in agreement with the observations of Ho and

Huang (1980).

The response in mode 4 is qualitatively similar to that in mode 3 to the extent
that saturation of the response frequency is followed first by amplification of
its 1/2 subharmonic and then by a three-wave interaction with the forced 1/4
subharmonic,which ultimately becomes dominant and saturates at its self-limiting
amplitude. Self-preserving development of the flow then ensues downstream of
the station where quadruple vortex coalescence is completed, again in agreement
with the observations of Ho and Huang (1980). The nonlinear viewpoint and
mechanism advanced here thus allow ? unified interpretation and description of
the processes whereby a mixing 1ayef subject to diverse initial conditions and

external forcing relaxes to a self-preserving behavior. The comments below seek

to ascertain the role of that mechanism in the fully developed turbulent regime. °

In a fully developed turbulent flow, the dominant, large scale instabilities
considered here are subject to distinct amplitude and frequency modulations,
induced either by externally imposed disturbances or by secondary three-dimen-:

sional instabilities intrinsic to the vorticity patterns which evolve with the

bt il it Jiagd 3 i antiiliniinil) Sl o

ok b 4

il L kil

1N N

w17 st de L M bl e g

Ll




i el

AN i LS L il b

NYU/DAS 81-06

large scale structures. Given the nonlinear nature of the instability evolution
process, these modulations result in the seemingly random occurrence in time

and space of the major observable events, e.g., vortex pairings.
example, in a naturally transitioning mixing layer, where the initial amplitude
and frequency of the selected response disturbance are subject to modulation,

the first vortex pairing occurs randomly in time and space mainly because the

Thus, for

strength and separation of the participating vortices vary with the modula-

tion of the generating disturbance. As a result, the mean vorticity thickness &

displays linear growth beginning at/about the station where the random

pairing occurs in the mean.

In a forced mixing layer, where the initial amplitude and frequency of the

response disturbance are determined uniquely, the position of first vortex coa-

" lescence (either binary or multiple depending on the response mode) becomes

localized. Up to that position, the thickness 6w grows in the stepwise

fashion predicted, for example, by the strictly twodimensional, deterministic

calculations of Aref and Siggia (1980) and this pdper. Beyond that position

however, the thickness 6m grows linearly because secondary instabilities,

intrinsic to the vorticity patterns generated by the first coalescence, modu-
late the amplification of the subharmonic responsible for the second coales-

cence and cause that event to occur randomly in space and time.

Prominent among the modulating disturbances are the secondary threedimensional
instabilities which cause the formation of longitudinal streaks (Miksad 1972,
Brown and Roshko 1974), and the spanwise redistribution of the dominant mode

energy alluded to in Section 5. Their effect is to impart spanwise-variable

rates/stages of evolution/merging upon the vortical structures associated
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with the dominant mode at a ground-fixed observation station. The immediate
3 : consequences are twofold: 1I) the evolving structures attain spanwise
" skewed/branched configurations as observed by Browand and Troutt (1980); 3
II) sequential structure realizations at a fixed observation station exhibit
jitter in their phase and amplitude/stage of evolution according to some
i probability density function (p.d.f.). In the present view the scale relation- :
ship, as well as the mmode and extent of interaction between the dominant stream-

wise and spanwise instabilities, are deterministic; randomness is relegated

s | to the spanwise phase exhibited by the latter instability in sequential

DN B~ R T T

realizations of the structures at the observation station. Specifically, the

spanwise instability embodies the selective response of the supporting

:
€
i
i
i

! vorticity concentration to the random forcing provided by the prevailing

three-dimensional disturbance environment. The receptivity and amplification

TR A AT
4k

characteristics of the vortical structure with respect to spanwise disturbances 3

act as band pass filters to select the "response”. As a result, the wave-

S ORI TV TR

length of the spanwise instability necessarily scales with that of the locally

dominant streamwise mode and with the related local mean vortical thickness am

AMnst o ddn sl o

; o of the mixing layer. Upon selection, bhe spanwise instability grows to an

amplitude Timited by the nonlinear requirement that the ensuing threedimensional

T

stretching of the supporting vortical structure remain bounded. As a result,
g-. the p.d.f. of the structures observed at a fixed station possesses a well-

defined finite spread; also, the structures persist and cyclically reproduce

TR TR T e

{ ' themselves with quasi-two dimensional form at large distances downstream.

-

Finally, if the structure generation mechanism and life cycle are self-pre- ;
serving as proposed in this paper, so must be their interactions with the ;

1 s spanwise instabilities and, therefore, the statistics of structures observed

! at different downsiream stations. The experiiental findings that the p.d.f,
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of vortical structure life.ime in a mixing layer (Roshko 1976) as well as
the spanwise distribution of cross-correlation coefficient (Browand and
Troutt 1980) are in fact self-preserving, support this conclusion. Thus,
deterministic nonlinear mechanisms and bounds appear to control not only
the twodimensional evolution of the structures but also their concurrent
seemingly random, finite amplitude, threedimensional modulations and distor-
tions, which are prerequisite to the aforenoted onset of self-preserving
behavior, with linearly growing mean thickness, following the first

coalescence of vortices in forced as well as unforced mixing layers.

A consequence of the interaction between large scale streamwise and span-
wise instabilities, and the attendant jitter of the structures, is the
broadening of the low frequency peak in the spectra of fixed point measure-
ments in a turbulent mixing layer. Unfortunately, this broadening does

not necessarily controil the shape of the low frequency spectrum. The large

scale nonlinear waves, which dominate the flow according to the present model,

have nonsinusoidal shape (see Section 4) further complicated by the modu-
lations attendant to the jitter. The coherence of such waveforms is eas®ly
lost in a spectral representation, which disregards phase information and
provides only an averaged linear Fourier decomposition of the signal. For
thesignal shapes on hand the Fourier decomposition typically includes
several artifacts waich further broaden the spectrum (Lake and Yuen 1978).
Thus, the proposed dominant wave model of mixing layer dynamics is not

contradicted by the absence of spectral peaks in the large budy of accepted

measurements within turbulent mixing layers.
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An additional noteworthy aspect of the interaction between the large scale
streamwise and spanwise instabilities in a mixing layer becomes manifest

upon a comparison of the mean thickness growth rates measured in experi- i

9 v o memaree. . -

ments with those predicted by deterministic, strictly two-dimensional
,~ models, which ignore the spanwise instability (e.g. Aref and Siggia 1980 '

: ;
] "
E | as well as Section 5 of this paper). Remarkably, theory and observation é
j are in reasonable agreement, thus indicating a nulljaverage effect of the ;
‘ 1nteraction'upon the development kf the flow. Several additional infer- é

ences may then be advanced. First of all, the twodimensional models

E adequately describe the distribution of Reynolds stress in the flow. Con-

? : versely, Reynolds stress distributions so predicted provide a first principle

i alternative and/or complement to flow analysis by the generally accepted

é ‘ %. second order closure models, whose success often depends on the suitable

empirical selection of third order corre]ation coefficients. Secondly, the

cascade of energy in threedimensional wavenumber space provides an important -
contribution to the level and distribution of turbulent kinetic energy in

the flow, but has little influence, either qualitative or quantitative, on

T LI bt i Lot R il LU

. the evolution of the large scale structures and on the distribution of

Reynolds stress. Since the distributions of all second order turbulence

quantities in a mixing layer become self-preserving after the second vortex

i

pairing (Browand and Latigo 1379) . the cascade must be intrinsic to, and

| AT H LT

bound with, the evolving vorticity patterns of the large scale structures,

] & and must evolve subject to the same broad constraints previously indicated :

* We conjecture that the low frequency and inertial subranges of spectra j
become also self preserving after the second vortex pairing.
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for the large scale spanwise instability -- i.e., wave vectors selected

T TR YT m

by the receptivity and amplification characteristics of the supporting
advected flow patterns, phase determined case by tase by the prevailing

random disturbance environment, amplification 1imited by nonlinear bounds

P - e

on the ensuing distortion of the supporting flow pattems, effect confined E

to localized distortions of the dominant carrier waveshape and the asso-

-

R al

i ciated distributions of fluctuations. The overall energy of the carrier

wave and its evolutionary interaction with the mean flow are then influ-

bl ot o

enced only slightly, and the self-preserving statistics of the cascade

process, as well as its negligible effect upon the dynamics of the large

MR T e

scale structures and the development of the flow, are rationalized.

E

? The arguments above support the premise of the proposed model that the.large

=

§ : scale structures and the mean flow of a mixing layer constitute a largely

% j self-contained nonlinear twodimensional flow system, which evolves by a ;

3 : self-reproducing deterministic 1imit cycle. The cycle, although subject -
= ‘ to modulation by intrinsic self-limiting instabilities, becomes rapidly ob-

livious of initial conditions. Control of the flpw then seems possible

only by repeated local interference with either the mean flow or the domi-
nant modes associated with the large scale structures. For example, one
anticipates that, in 1ine with the findings of Ho and Huang (1980), the
growth rate of the mean mixing layer thickness at a selected downstream dis- §
tance is enhanced by in phase, small amplitude, external, forcing of either j

the locally dominant wave frequency or its nondispersive fractional subharmonics.

Conversely, one expects that the growth rate is diminished if the frequency
of the forcing is preserved, but its phase is reversed. Receptivity consid-

erations together with the proposed model, and/or slight extensions thereof,
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should provide a realistic tool for evaluating the effectiveness of such

control concepts and for designing attendant demonstration experiments.

This work was supported by the Office of Naval Research under Contract
N00014-79-C and, in part, by the Office of Scientific Reseach under
Grant AFOSR 80-0184.
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FIGURE 7:
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The evolution of the mean velocity profile -U(y,t) at selected

times preceding saturation of the fundamental. Nonlinear ‘model.
000, t =0; ——, t =19.8; —s—, t = 13.5.
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FIGURE 8: The evolution of the mean velocity profile U(y,t) at selected times
following saturation of the fundamental. Nonlinear model with subhar-

monics suppressed. ©o o, t= 13.5; — . — , t = 19.5 and ,

t=25.75; ———, t =22.15; ———., t = 30.55. :
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